Responsible AI in the Generative Era with Michael Kearns

EPISODE 662

Join our list for notifications and early access to events

About this Episode

Today we’re joined by Michael Kearns, professor in the Department of Computer and Information Science at the University of Pennsylvania and an Amazon scholar. In our conversation with Michael, we discuss the new challenges to responsible AI brought about by the generative AI era. We explore Michael’s learnings and insights from the intersection of his real-world experience at AWS and his work in academia. We cover a diverse range of topics under this banner, including service card metrics, privacy, hallucinations, RLHF, and LLM evaluation benchmarks. We also touch on Clean Rooms ML, a secured environment that balances accessibility to private datasets through differential privacy techniques, offering a new approach for secure data handling in machine learning.

Connect with Michael

Thanks to our sponsor Amazon Web Services

You know AWS as a cloud computing technology leader, but did you realize the company offers a broad array of services and infrastructure at all three layers of the machine learning technology stack? AWS has helped more than 100,000 customers of all sizes and across industries to innovate using ML and AI with industry-leading capabilities and they’re taking the same approach to make it easy, practical, and cost-effective for customers to use generative AI in their businesses. At the bottom layer of the ML stack, they’re making generative AI cost-efficient with Amazon EC2 Inf2 instances powered by AWS Inferentia2 chips. At the middle layer, they’re making generative AI app development easier with Amazon Bedrock, a managed service that makes pre-trained FMs easily accessible via an API. And at the top layer, Amazon CodeWhisperer is generally available now, with support for more than 10 programming languages.

To learn more about AWS ML and AI services, and how they’re helping customers accelerate their machine learning journeys, visit twimlai.com/go/awsml.

Amazon Web Services Logo